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ABSTRACT 

A statistical model of surface roughness is used in an attempt to under- 
stand the gross  infrared emissive characteristics of the Moon. A self- 
shadowing theory of rough surfaces is developed which is relevant also, in 
a different context, to the determination of mean surface slope from shadow 
measurements, a technique of use in the analysis of Lunar Orbiter photo - 
graphs. 
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LUNAR SURFACE ROUGHNESS, 
SHADOWING AND THERMAL EMISSION 

B. G. Smith 
August, 1966 

INTRODUCTION 

The surface of the Moon is rough, both microscopically as deduced from 
photometric studies (ref. 1) and on the large scale as observed through tele- 
scopes, and various theoretical models have been constructed to incorporate 
the effect of surface roughness in the interpretation of lunar remote sensing 
experiments. A statistical description of the surface in terms of a density 
distribution of height deviations from a mean spherical Moon has been parti- 
cularly useful in an understanding of the lunar radar backscattering proper- 
ties (ref. 2) and an attempt is made in this paper to extend the use of the 
statistical model to examine the effect of surface roughness on the overall 
emission of thermal radiation and the casting of shadows in sunlight. 

The model describes the Moon as a smooth sphere upon which are super- 
imposed positive and negative undulations of height generated by a stationary 
random process. * Locally the underlying surface may be considered plane. 
The density distribution of surface height deviations ( 5 )  from the mean surface 
is described by a continuous probability function P(5), of zero mean, chosen 
to be Gaussian for computational ease, where the probability of finding a 

*It is likely that the surface is in fact composite, being a superimposition 
of roughness of several different scales. It will be assumed that any experi- 
ment is particularly sensitive to one scale. 



height deviation within the range AS about 5 is 

and cr is the root mean square height deviation. The horizontal scale of the 
relief is contained within an autocorrelation function p (r), defined by 

the average being taken over all vectors - x lying in the m a n  plane. p(r) is 
independent of the direction of - r for an isotropic surface. Higher dimen- 
sional distribution functions and their appropriate correlation matrices may 
be derived from the autocorrelation function p(r) (ref. 3). In particular, the 
joint distribution function of surface slopes p (=g] and q [ = a5/3y) for 
the Gaussian surface described by (1) is: 

2 where w , the mean square surface slope is [ -$ p(r)] 
r = O  

Each infinitesimal element of the surface can absorb, reflect and emit 
radiation, and possibly shadow its fellows, and the behavior of the surface 
as a whole is the summation of elemental contributions. 
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SHADOWING THEORY 

Geometrical self -shadowing of the surface presents the greatest analyti- 
cal difficulty and will be discussed first, with an approach essentially similar 
to that used in a recent paper by Wagner (ref. 4), suggested by Beckmann 
(ref. 5). The problem is the following: What is the probability S(5, p, q, 8) 

that a point A on a random rough surface, of given height 5 above the mean 
plane and with local slopes p,q will not lie in shadow when the surface is 
illuminated with a parallel beam of radiation at an angle of incidence 8 to the 
mean plane ? Figure 1 illustrates a section through the surface. The origin 
of coordinates is taken in the mean plane below A and the axes oriented with 

the incoming beam lying in the x=o plane. Only parts of the surface in this 

plane to the right of A can shadow A, and S(S, p, q, e) o r  S(A, e) for 
short, is equivalent to the probability that no par t  of the surface to the right 
of A will intersect the ray AS. This, in turn, may be written as the limit: 

S(A, 0) = Lim S(A, 8, T )  
T + W  

where S(A, 8, T )  is the probability that no par t  of the surface between y=o 
and y- will  intersect the ray AS. A differential equation for S(A, 9, T )  

may be developed thus: 

where now &(A, 8, T AT) is the conditional probability that the surface 
will not intersect AS in the interval AT given that it does not in the inter - 

I 
val T .  Turning this around and suppressing the functional dependence upon 
A, e: 

Q(A,8, I AT) = 1 - g(+T (6 ) 
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Figure 1: Section of a random rough surface illuminated from S 
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where g(T) AT is the conditional probability that the surface in AT will 
intersect the ray AS given that it does not in  the interval T .  Equation (5) 
now becomes, again suppressing explicit A and 8 dependence: 

S(T + A T )  = S(T) . { I  - g(T)Ar)  

b 

.Expanding S(T + A T )  about T in a Taylor Series to first order in AT 

leads to the differential equation 

- -  dS(T) ch - - g(7) . S ( T )  

which may be integrated to yield 
.c 

S(o) will clearly be unity if q is less than cot 8 and zero otherwise, so 

S(o) = h (u, q), where h is the unit step function and p=cot 8 .  Equation 
(4) now becomes 

The heart of the task lies in the evaluation of g(T) and the subsequent 
integration over T .  Instead of an attempt at a complete analysis g(T) will be 

approximated by replacing g(T) AT with the conditonal probability that A 
will be shadowed by the surface in AT given that it is not shadowed by the 
surface - at y=T. (This avoids the difficulty of including the effects of correla- 
tion between points on the surface in AT and the infinity of points in 7). 
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If the surface at T does not shadow A, 

symbolically denoted as circumstance a!. 

If the surface in AT does shadow A, and q = 

that is: Z ( T )  must lie in the interval (q -  AT below 5 + p r ,  and q l  P, 

denoted as circumstance 6.  g(T) AT is just the conditional probability that 
B will occur given a, o r  

A well known relationship in probability theory links R@ I a!) with R(a, B )  
and R(a!), respectively the probability of a! and /3 occurring independently 
and the probability of a! occurring by itself: 

the ref ore 

If P(z, q I A, 7) is the joint probability distribution function of z and 
11 at y = r conditonal upon given height and slopes at A, then from the 
meaning of circumstances ac and B , equations (11, 12) 
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and 

00 

r 

and so  

where the renormalization effected by the denominator allows for the condi- 
tion that z(T) is known to be I: S + ~ T .  

With known distribution and auto-correlation functions the integrals in 
equation (18) may be evaluated in full, but this is a tedious process and not 
illuminating. Great simplicity is gained by neglecting correlation between 
the height and slopes at A and those at y = r .  The conditional distribution 
function in this case reduces to a product of Gaussian functions: 

and within this approximation equation (18) becomes 
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where erfc is the e r r o r  function complement and 

The integration over 7 (equation (10) is now simple and leads to 

S(A, e) = S(f,p, q, e)  = h(p - 9) 1 - 1/2 erfc ( S / D G )  (22) [ Î  
Two further distributions may be deduced from S(A, 6): the probability of 
A not being shadowed, independent of 5 which is 

and the probability that a point on the surface will not be shadowed, indepen- 
dent of height and slope, S(6) 

a 



The expression for  S ( e )  is compared in Figure 2 with that derived by 
Brockelman and Hagfors (ref. 6) from a computer simulation of an illuminated 
Gaussian random rough surface; good agreement is achieved between present 
theory and 'experiment'. Wagner (ref. 4)  does not use the device of renor- 
malization, equation (18), and instead includes correlation directly in the 
form of a Gaussian autocorrelation function to evaluate the conditional prob- 
ability function P(z, rl I A, 7). He is forced to approximate the integral over 
7, equation (lo), and at the expense of analytical complexity in fact gains a 
closer agreement with the simulation. Equation (24) provides an adequate 
approximation for the present purpose, and as will be seen later contains an 
advantage in satisfying a self -consistency condition. &calling the salient 
result of shadowing theory which will be needed subsequently: the probability 
that a point on the surface with local slopes p, q will be illuminated by a beam 
of incidence angle 0 is 

S ( p ,  q, e )  = h(Cc - q, = S(q, e)  (independent of p) 
F ( P )  + 11 

OPTICAL SHADOWING 

A measurement of the fraction of a rough surface visibly illuminated 
yields S(6)  directly and would provide an experimental means of investigating 
the statistical parameters of the surface; in the case of a Gaussian surface it 
would allow a determination of the mean slope. To explain the method sha- 
dowing theory must be developed further. Figure 3 illustrates a section of a 
two dimensional surface illuminated from the right. 6A is a surface element 
at P with local normal PN; P V  is normal to the mean plane and PS is the 
illuminating ray. PK is the direction to a distant observer, and for simpli- 
city it will be assumed that PK lies in the plane of illumination, defined as 
that plane containing P V  and PS. The visibly illuminated area of the whole 
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surface projected onto the plane perpendicular to the direction of view is 

cos KGN 
dxdY Jb, q, 6 , d  

cos V6N 

(26) 

ii dA J(p, q, e , @ )  cos K6N = 

area A, in 
Xy plane 

surface 

where J is a function having the value unity if 6A can be seen to be illu- 
minated and zero otherwise. Integration over the surface is equivalent to 
taking an average over the distribution of illuminated facets (invoking the 
ergodic theorem) and so: 

cos K$N 
cos V6N 

p roj ec ted 
illuminated area 0 

= fAo COS cp (27) 

where f is the fraction of the total projected area illuminated and T(p, q,e,g) 

is the probability that a point with slopes p, q will not be shadowed for  
either of the ray directions PS o r  PK. It is necessary to consider three 
distinct ranges of cp, and the sign convention will be used in which angles 
measured toward the source of illumination are to be positive. 

a. cp>8 

The joint probability T may be decomposed into the product of a 
conditional and an unconditional probability 

where T(p, q, 9 I c p )  is the probability that the surface does not 
obstruct the ray PS given that it does not obstruct PK, and 
T'(p, q,g) is the probability that the surface does not obstruct 
PK. 

- 
Tb,q,%cp) = Tb,q,81cp) T'b,%cp) (28) 

is necessarily equal to unity if @ > 8 ,  and T' simply 

S ( e d ) ;  thus 

12 



Case (a) 

where 
1 - 

p = cot cp and G(a = km + 11 

An exactly parallel argument to (a) in nh ich the roles of 8 and cp 

are interchanged leads to: 

Case (b) 

c. cp<o 

In this case it may be assumed to a good approximation that the 
shadowing functions for  8 and cp are independent, then T decom 
poses into the product: 

Case (c) 

Using a, b, o r  c the integral in equation (20) may be evaluated and 
for cases b and c it yields 

(32) 
(b) 

P 
o r  
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If the observer views the surface away from grazing angle, (p 2 w), 
G( r )  is close to unity and equation (34) becomes 

(a result of similar form to (32) which could equally well have been 
deduced by replacing S(q,cp) by unity in the expression for T(p, q,O,Cp), 
equation (31), and 

where the sign change reflects the sense of the angle of observation. 
If, as well, 6 >> p ,  i. e., 14 << 8 ,  both expressions reduce to the 
simple form 

If 8 = q ,  then equation (32) reduces to f = 1, demonstrating that 

dA J(p, q, 4 e) COS KGN = A. COS 8 il 
surface 

which expresses the self -consistency condition mentioned earlier, that the 
visible area of a rough surface projected onto the plane perpendicular to the 
direction of view is independent of the roughness and equal to the projected 
area of the underlying mean plane, as indeed it must be. Here lies the 
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advantage of (25) over the equivalent expression of Wagner (ref. 4). With the 
form of S(q, e) derived in this paper equation (38) is satisfied identically, 
not approximately. The self-consistency condition also ensures that f = 1 
for  all cp> e, (case (a)). 

The condition imposed upon the orientation of the direction of view in the 
plane of illumination may be relaxed at the cost of greater care in the analy- 

sis of the joint probability function T(p, q, 8,cp). Here attention will be re- 
stricted to the regime where equations (33, 36) are valid. On the Moon this 

limits observation to the equatorial region and a measurement of the shadows 
cast in sunlight allows, within the model, a direct determination of the mean 
slope of local surface roughness on the scale of resolution of the photographs 
used. S(e) ,  calculated according to equations (33,36) from measurements of 
the proportion of area shadowed in atlas photographs (ref. 7) of a highland 
area north of Julius Caesar crater [15OE, 5ON] , is displayed in Figure 4, 

with theoretical curves calculated for various values of the RMS slope w. 
Statistical uniformity of the surface across the region examined (-180 x 180 
km ) was assumed and the effect of varying Sun angle deduced from different 
north-south strips of the same photograph. Included in the diagram is a 
point taken from a shadow analysis in a highland region near the crater 
Argelander [ 5OE, 15OSJ made, in a different connection by Watson, Murray 
and Brown (ref. 8). Comparison with theory suggests a mean slope of -9 , 
which if typical of large parts of the Moon compares well with the value 6' - 
12' deduced from radar studies (ref. 9) for structure of greater than meter 
scale. 

2 

0 

While of interest in connection with Earth-based lunar photographic 
studies it is suggested that shadow analysis may be useful also in estimating 
meter scale surface roughness from high resolution Lunar Orbiter photo- 
graphy which would provide a means for the rapid screening of photographs 
during the process of selection of a site for an Apollo landing. 
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INFRAFCED EMISSION STUDIES 

Observers of the infrared emission of the Moon have noticed two pheno- 
mena which are conventionally attributed to surface roughness. Pettit and 
Nicholson (ref. lo), who observed the change of infrared brightness across 
the equatorial belt of the full Moon disc found that the brightness decreased 
as the 2/3 power of the cosine of the angle of observation rather than the 
first power which would be expected for a spherical Lambertian surface. 
Sinton (ref. ll), who measured the brightness of the subsolar point over a 

lunation noticed an angular dependence of the brightness not given by a spher- 
ical Lambertian surface. An attempt will be made to interpret both these 
observations in terms of surface roughness of a scale below the resolution of 
the detector. 

Each surface element of the rough Moon is assumed to be a perfect Lam- 
bertian emitter of thermal radiation at the wavelengths concerned, Heat flow 
through the surface is neglected (a good approximation during the lunar day) 
and energy balance for the surface element used to equate absorbed sunlight 
with radiated thermal energy. The contribution to the radiation incident on 
an element emitted o r  reflected by its fellows is neglected, as is any angular 
dependence of the absorption coefficient. Emissive and absorptive properties 
are assumed uniform across the surface, a section of which is illustrated in 
Figure 5a illuminated from vertically above and observed at a distance from 
the direction PK. The total energy radiated by the element 6A is propor- 
tional to 6A cos VGN, and that reaching the observer proportional to 
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Figure 5a: Part of a random rough surface 
vertically above and observed from K 

I 
" I  

Iluminated from 
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. 
Figure 5b: Part of a random rough surface both illuminated and 

observed from K 
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The total radiation, Ft, reaching the observer from the surface is 

Averaging over the surface, dividing by the projected area and normalizing 
gives the observed brightness, BA(q), 

whe re 
A 1 cos VPN = 

(1 +P2 + q 2 P  

4 

cos NPK = 

BAb) calculated numerically from equation (41) for various values of surface 
mean slope w is shown as a function of cp in Figure 6, upon which are super- 
imposed the experimental findings of Sinton for the brightness of the subsolar 
point. 

The change of brightness across the full Moon disc requires slightly 
different analysis. In Figure 5b an element of the surface is illustrated, 
illuminated and observed from the same angle cp. Arguments similar to those 
preceding equation (40) lead to an expression for the radiated energy reach@ 
the observer from the whole surface: 

- 
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// 
mean 
plane 

cos VPN 

The apparent brightness of the surface as a function of the angle of incidence 
is just 

Values of BB(q) computed from equation (44) are displayed in Figure 7, 

compared with Pettit and Nicholson’s experimental observations. 

In each case it is seen that theory explains the qualitative features of the 
observations. The limbs of the full Moon disc are brighter than expected for 
a smooth sphere, because the collection of randomly oriented facets provides 
an array radiating in the direction of the observer more efficiently than the 
equivalent smooth surface. Conversely the subsolar point is less bright than 
expected, for an analogous reason. 

Both BA(q) and BB(rp) approach limits as q + 7r/2 
W 

and 

Lim BA(7r/2) = BA(o) 
W O  
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and 

The quantitative agreement of theory and experiment is less satisfactory, 
partly because of experimental point scatter. If the model can be trusted the 
inference is that infra-red thermal brightness across the full Moon disc is 
affected primarily by structure of mean slope - 20°, probably of large scale, 
but that the brightness of the subsolar point depends upon much rougher 
small scale structure of mean slope 60 - 70'. It is not obvious why there 
should be this discrepancy. 

The presence of extreme roughness suggests that to describe the physical 

situation more closely the model should be improved to include the illumina- 
tion of a facet by radiation reflected and emitted by those adjacent; as Sinton 
has pointed out (ref. 11) the 'valleys' will then be hotter than the 'peaks' and 
the apparent brightness dependent upon the proportion of each visible. In 
addition, a complete theory should take account of the whole range of rough- 
ness in a coherent way rather than divide structure into two classes, the one 
of microscopic scale responsible for producing the Lambertian behavior 
assumed to be characteristic of the other coarser relief, a separation made 
implicitly in this paper. 
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CONCLUSIONS 

A statistical model of the Moon's surface roughness has been used in an 
attempt to explain the deviations of the observed gross  infrared thermal 
emissive properties of the Moon from those characterizing a smooth Lamber- 
tian surface. Qualitative agreement is more striking than the quantitative 
comparison of theory and experiment, but the latter suggests that the thermal 
brightness variation across the full Moon disc is affected by large scale re- 
lief, of 10-20' mean slope, while variation in the brightness of the subsolar 
point during a lunation is determined by much rougher small scale structure. 
This discrepancy demonstrates a weakness of the model which might be re- 
duced by a more careful analysis of the contribution of locally emitted radia- 
tion to the total incident energy. 

The method requires development of a self shadowing theory of random 
rough surfaces which may be used, in a different context, to determine local 
mean surface slope from the amount of shadow visible in a Moon photograph. 
Analysis of an Earth-based photograph of a typical highland region yields 9' 

for the mean slope of large scale roughness. It is suggested that the tech- 
nique might facilitate the rapid analysis of Lunar Orbiter photographs. 
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